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Fluctuation theorem for stochastic dynamics

Jorge Kurchan†
Laboratoire de Physique Théorique de l’ Ecole Normale Supérieure de Lyon, Alĺee d’Italie,
Lyon, France

Abstract. The fluctuation theorem of Gallavotti and Cohen holds for finite systems undergoing
Langevin dynamics. In such a context all non-trivial ergodic theory issues are bypassed, and the
theorem takes a particularly simple form. As a particular case, we obtain a nonlinear fluctuation–
dissipation theorem valid for equilibrium systems perturbed by arbitrarily strong fields.

1. Introduction

The fluctuation theorem (FT) concerns the distribution of entropy production over long time
intervals. It states that the ratio of the probabilites of having a given entropy productionσt
averaged over a (large) time interval to that of having (−σt ) is etσt . It was stated and proved
in [1] (in what follows GC) for thermostated Hamiltonian systems driven by external forces,
under certain ‘chaoticity’ assumptions for the dynamics [2].

The relevance of this apparently bizarre result became clear when it was shown [3] that
it reduces to the fluctuation–dissipation theorem and the Onsager relations in the limit of
zero power input (i.e. in equilibrium).

In this paper we show how to derive the GC fluctuation theorem for systems undergoing
Langevin dynamics. The purpose of the exercise is threefold.
• The Langevin dynamics is trivially ‘ergodic’, in the sense that for purely conservative

forces, bounded systems with finitely many degrees of freedom reach the Gibbs–Boltzmann
distribution irrespective of the form of the interaction.

For this reason, one can make a proof of the FT that is as simple as it can possibly be,
having bypassed every non-trivial question of ergodic theory. For example, the stationary
states in this context are the zero eigenvalues of a certain (non-Hermitian) Schrödinger-like
operator, and are of a rather familiar nature.

Because of this extreme simplicity, one can use the Langevin systems as an heuristic
tool to find new results, and try to see whether they hold for more general thermostated
Hamiltonian systems.
• In order to prove the FT in GC, in addition to making some assumptions regarding the

‘chaoticity’ of the models, some conditions of boundedness and finiteness of the number
of degrees of freedom were also required. Here, because all ‘ergodicity’ aspects have
been done by hand, one can study how the FT can be violatedin problems with (and as
a consequence of) having infinitely many degrees of freedom. Hence, we have a formalism
that allows us to isolate the violations due to ‘complexity’ (i.e. non-trivial features specific
to the large-size limit) from violations due to the possible non-applicability of the chaotic
hypothesis.

† Also at: Institute for Theoretical Physics, University of California at Santa Barbara, CA 93106, USA. E-mail
address: Jorge.Kurchan@enslapp.ens-lyon.fr
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There are situations for which in the limit of zero forcing the fluctuation–dissipation
theorem is violated in a stationary stateof an infinite system[4]. Because the FT reduces
to the fluctuation–dissipation theorem in the limit of zero non-conservative forces [3], this
is a particular instance in which the FT is violated.
• There are many interesting driven systems that can be well represented by Langevin

problems, e.g. Burgers–KPZ, phase separation under shear, turbulence, etc.
This paper is organized as follows. In section 2 we review the equations describing the

evolution of the probability distribution for a Langevin process. We do this for the case
with inertial (second time-derivative) term, corresponding to the Kramers equations. We
discuss the (crucial) property of detailed balance, and how it is modified in the presence of
non-conservative forces.

In section 3 we show that the modified detailed balance propery leads to the FT. We
also present thelimit theoremfor the entropy production [5], as applied to the stochastic
case. We then follow the steps of Gallavotti [3] in showing how the FT reduces to the
Green–Kubo formula in the purely conservative limit.

We construct a particular form of the FT corresponding to purely conservative driving
forces which yields a nonlinear generalization of the usual fluctuation–dissipation theorem.

In section 4 we show that the arguments of the preceding sections can be applied to a
Langevin process without inertial term, corresponding to the Fokker–Planck equation. We
also present a direct proof of the nonlinear fluctuation–dissipation theorem for this case.

In the conclusions we discuss the possible violations of the FT equality in systems with
infinitely many degrees of freedom.

2. Langevin and Kramers equations

We will consider the Langevin dynamics

mẍi + γ ẋi + ∂xiU(x)+ fi = 0i (2.1)

wherei = 1, . . . , N . 0i is a delta-correlated white noise with variance 2γ T .
The fi are velocity-independent forces that do not necessarily derive from a potential.
We will not deal here with the limitsγ = 0 (Hamiltonian dynamics),T = 0 (noiseless

dynamics) andN →∞, for reasons that will become clear.
We shall first treat, in detail, the case with inertiam 6= 0, leading to Kramer’s equation,

and later indicate how to treat the case in whichm = 0 which leads to Fokker–Planck
equation.

2.1. Kramers equation

If m 6= 0, the probability distribution at timet for the process (2.1) is expressed in terms
of the phase-space variablesxi , vi and is given by

P(x,v, t) = e−tHP (x,v, 0) (2.2)

whereH is the Kramers operator [6]:

H = ∂xi vi −
1

m
∂vi

(
γ vi + (∂xiU(x))+ fi + γ

T

m
∂vi

)
. (2.3)

We find it convenient to use bracket and operator notation:

P(x,v, t) = 〈x, v|φ(t)〉
|φ(t)〉 = e−tH |φ(0)〉. (2.4)
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Expectation values of a variableO(x, v) are obtained as:

〈O(t)〉 = 〈−|O|φ(t)〉 (2.5)

where we have defined the flat distribution:

〈−|x, v〉 = 1 ∀x, v. (2.6)

Introducing the Hermitian operatorŝpxi , p̂vi as:

〈x, v|p̂xi |φ(t)〉 = −i
∂

∂xi
〈x, v|φ(t)〉

〈x, v|p̂vi |φ(t)〉 = −i
∂

∂vi
〈x, v|φ(t)〉

(2.7)

the Kramers Hamiltonian reads:

H = ivip̂xi −
i

m
p̂vi

(
γ vi + ∂xiU(x)+ fi + γ

iT

m
p̂vi

)
. (2.8)

One can explicitate ‘conservative’ and ‘forced’ parts ofH (the latter being non-conservative
if fi do not derive from a potential):

H = Hc − i

m
p̂vi fi . (2.9)

Probability conservation is guaranteed by

〈−|H = 0. (2.10)

A stationary state satisfies:

H | stat〉 = 0 〈−| stat〉 = 1. (2.11)

2.2. Detailed balance and time reversibility

The evolution of the system satisfies in the absence of non-conservative forces a form of
detailed balance:

〈x ′, v′|e−tH c |x, v〉e−βEK(x,v) = 〈x,−v|e−tH c |x ′,−v′〉e−βEK(x′,−v′) (2.12)

where the total energy isEK(x,v) = 1
2

∑
i mv

2
i +U(x). This leads to a symmetry property,

which in operator notation reads:

Q−1
K H

cQK = Hc† (2.13)

where the operatorQK is defined by:

QK |x, v〉 ≡ e−βEK(x,v)|x,−v〉. (2.14)

In the presence of arbitrary forcesfi , equation (2.13) is modified to:

Q−1
K HQK = H † + βfivi ≡ H † − S†. (2.15)

The operatorS is the power exerted on the system divided by the temperature

S† = −βf · v (2.16)

and this is the entropy production in the case of a stationary system. We also have:

Q−1
K SQK = −S†. (2.17)

Clearly, in the particular case in which the forcesfi derive from a potentialfi = ∂A
∂xi

:

S = −βfivi = −β dA

dt
(2.18)
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whose average value at stationarity is zero.
A non-increasingH-function may be defined as [7]

H(t) =
∫

dx dvP(x,v)(T lnP(x,v)+ E(x,v)) (2.19)

and may be interpreted as a ‘generalized free energy’. WritingPstat(x,v) ≡ 〈x, v| stat〉, we
have thatḢ = 0 implies that

−〈−|f · v| stat〉 = γ
∑
i

∫
dx dv

(mviPstat+ T ∂viPstat)
2

m2Pstat
≡ T 〈σ 〉 > 0. (2.20)

The averaged entropy production at stationarity〈σ 〉 is non-negative†.
Let us now write a (Green–Kubo) fluctuation–dissipation theorem for apurely

conservativesystem perturbed by an arbitrary small force field−h(t)f(x). The current
operator is

J ≡ f · v (2.21)

andS = −hβJ . Linear response theory implies, for any observableO(x, v) (cf (2.4) and
(2.8)):

δ〈O(t)〉
δh(t ′)

|h=0 = − i

m
〈−|Oe−(t−t

′)Hc

p̂vi fie
−t ′Hc | init〉. (2.22)

In equilibrium | init〉 = |GB〉, the Gibbs–Boltzmann distribution and:

− i

m
p̂vi |GB〉 = βvi |GB〉 e−t

′H |GB〉 = |GB〉 (2.23)

which introduced in (2.22) implies the fluctuation–dissipation theorem:

δ〈O(t)〉
δh(t ′)

∣∣∣∣
h=0

= β〈−|Oe−(t−t
′)Hc

J |GB〉 = β〈O(t)J (t ′)〉θ(t − t ′). (2.24)

2.3. Power and entropy production distribution

Consider the powerT σt done by the forcesfi in a time t for a given path in phase space
(x(t ′),v(t ′)):

T σt ≡
∫ t

0
f(x)(t ′) · v(t ′) dt ′. (2.25)

We wish to study the distribution5t(σt ) of σt for different noise realizations. Let us show
that:

5t(σt ) = t
∫ +i∞

−i∞
dλ〈−|e−t (H+λS)| init〉etλσt . (2.26)

This is most easily seen in the path-integral representation. DenotingS the action associated
with H along a path we have

5t(σt ) = t
∫ +i∞

−i∞
dλ〈−|e−t (H+λβf ·v−λσt )| init〉

= t
∫ +i∞

−i∞
dλ
∫
D(paths)e−S(path)−λ(β ∫ t0 f ·v(t ′)dt ′−t〈σ 〉p)

= t
∫
D(paths)e−S(path)δ

(
β

∫ t

0
f · v(t ′) dt ′ − tσt

)
. (2.27)

† In the pure Hamiltonianγ = 0 case〈σ 〉 = 0 at all times, a consequence of Liouville’s theorem.
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Bearing in mind that the factor e−S(path) is precisely the probability of each path, the last
equality implies (2.26).

In section 3 we shall assume that there is a non-zero average〈σ 〉, and following GC
we shall work with the adimensional variable

p = σt

〈σ 〉 (2.28)

and study the distribution ofp given byπt(p) ≡ 〈σ 〉5t(〈σ 〉p).

3. Modified detailed balance and the fluctuation theorem

3.1. A first version of the fluctuation theorem

The FT follows from the modified form of detailed balance equations (2.15) and (2.17).
These two imply, for anyλ:

Q−1(H + λS)Q = H † − (1+ λ)S† = [H − (1+ λ∗)S]† (3.1)

so that(H+λS) and(H−(1+λ∗)S) have conjugate spectra. This relation has consequences
for the distribution of power. Let us see what the implications are forπt(p), starting from
an initial distribution| init〉.

πt(p) = t〈σ 〉
∫ +i∞

−i∞
dλ〈−|e−t (H+λS)| init〉etλ〈σ 〉p

= t〈σ 〉
∫ +i∞

−i∞
dλ〈−|Qe−t [H−(1+λ

∗)S]†Q−1| init〉etλ〈σ 〉p

= t〈σ 〉
∫ +i∞

−i∞
dλ〈init |Q−1†e−t [H−(1+λ

∗)S]Q†|−〉∗etλ〈σ 〉p. (3.2)

Using the fact thatH , S andQ are real:

πt(p) = t〈σ 〉
∫ +i∞

−i∞
dλ〈init |Q−1†e−t [H−(1+λ)S]Q†|−〉etλ〈σ 〉p. (3.3)

Making λ→−1− λ:

πt(p) = t〈σ 〉e−t〈σ 〉p
∫ −1+i∞

−1−i∞
dλ 〈init |Q−1†e−t [H+λS]Q†|−〉etλ〈σ 〉(−p). (3.4)

Now, 〈A|e−t (H+λS)|B〉 is for given|A〉, |B〉 an analytical function ofλ, and we can deform
the contour in the integral of the last line to

∫ +i∞
−i∞ .

Consider first the case in which we start from a Gibbs–Boltzmann distribution|GB〉 [8],
which need not bea stationary distribution in the presence of the non-conservative forces†.
We then have:

〈GB |Q−1† ∝ 〈−| Q†|−〉 ∝ |GB〉 (3.5)

and equation (3.4) implies,for all times:

πGB
t (p) = e−t〈σ 〉pπGB

t (−p) (3.6)

−〈σ 〉p = ln(πGB
t (p))− ln(πGB

t (−p))
t

. (3.7)

† This situation can be experimentally created by switching on the non-conservative forces att = 0 on an
equilibrated conservative system.
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Here we have added the superscript GB to indicate the initial condition.
What about other initial conditions? Already at this stage it becomes intuitive that if the

system is such that any initial condition (in particular the Gibbs–Boltzmann distribution)
evolvesin finite time∼τerg to the same stationary distribution| stat〉, then we should have
a result like (3.7) (but only fort � τerg) irrespective of the initial condition. Note that,
surprisingly, the stationary distribution does not appear to play a special role here, but
the Gibbs–Boltzmann distribution does! However, this statement has to be qualified if we
wish to identify the power made by the non-conservative forces as an ‘entropy production’,
something we can do only in the stationary regime.

3.2. Long-time distributions ofπ(p).

Let us make the above remarks more precise. If, under certain assumptions we have that
for long times there is a single limiting functionζ(p) [5] such thatirrespective of the initial
conditions

lim
t→∞

1

〈σ 〉t ln(πt )→−ζ(p) (3.8)

then the FT (3.7) will hold for long times for any initial condition, and will read:

ζ(p)− ζ(−p) = 〈σ 〉p. (3.9)

In order to derive (3.8) we shall make the two following assumptions.
(1) The lowest (zero) eigenvalue ofH is non-degenerate.
(2) The initial state has a non-zero overlap with the left eigenvector ofH ; 〈stat| init〉 6= 0.
Any of these assumptions may fail to hold in unbounded systems or in systems with

infinitely many degrees of freedom. Indeed, conservative systems with slow dynamics such
as glasses and coarsening are known to have a gap-less spectrum of the Fokker–Planck
operators (the gap goes to zero with the system’s number of degrees of freedom).

Furthermore, the gap vanishes in the purely Hamiltonianγ = 0 limit, as there are many
long-lived phase-space distributions in that case (e.g. invariant tori, etc), as well as in the
T = 0 case. Note thatH loses the second derivative in these cases. This is the main reason
why we only considerγ > 0, T > 0 here.

We proceed as follows. Introducing the right and left eigenvectors:

(H + λS)|ψR
i (λ)〉 = µi(λ)|ψR

i (λ)〉 〈ψL
i (λ)|(H + λS) = µi(λ)〈ψL

i (λ)| (3.10)

we have:

π
| init〉
t (σt ) = t〈σ 〉

∫ +i∞

−i∞
dλ
∑
i

〈−|ψR
i (λ)〉〈ψL

i (λ)| init〉e−t (µi (λ)−λ〈σ 〉p). (3.11)

Let us denoteµ0(λ) the eigenvalue with lowest real part and the corresponding left and
right eigenvectors|ψR

0 (λ)〉 and|ψL
0 (λ)〉. Under the assumptions above, there will be at least

a range of values ofλ around zero such that the eigenvalueµ0(λ) will be non-degenerate.
Then, the integral overλ will be dominated for larget by the saddle-point value:

ζ(p) = µ0(λsp)− λsp〈σ 〉p (3.12)

where the saddle pointλsp is a function ofp determined by:

dµ0

dλ
(λsp) = 〈σ 〉p. (3.13)

The dependence upon the initial distribution is, within these assumptions, subdominant for
large t .
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In order to check that the distribution ofp obtained from (3.12) and (3.13) is indeed
peaked atp = 1, we calculate

dζ(p)

dp
= dµ0

dλ

∣∣∣∣
λsp

dλ

dp

∣∣∣∣
λsp

− dλ

dp

∣∣∣∣
λsp

〈σ 〉p − 〈σ 〉λsp= −〈σ 〉λsp. (3.14)

Hence, the minimum ofζ occurs atλsp= 0. We can further calculate the derivative of an
eigenvalue using first-order perturbation theory. Equation (3.13) forλsp= 0 then reads:

〈σ 〉p|λsp=0 = dµ0

dλ

∣∣∣∣
λsp=0

= 〈ψ
L
0 (0)|S|ψR

0 (0)〉
〈ψL

0 (0)|ψR
0 (0)〉

= 〈−|S| stat〉 = 〈σ 〉 (3.15)

where we have used the fact that in the absence of perturbation the lowest eigenvalue is
zero and corresponds to the (unique) stationary state. Since thenµ0(0) = 0, we obtain that
ζ(p) takes its minimum (zero) value at preciselyp = 1 (i.e. σt = 〈σ 〉), and for larget the
distribution is sharply peaked atp = 1, as it should.

3.3. The fluctuation–dissipation theorem as the ‘conservative limit’ limit of the FT

Gallavotti has shown [3] that the FT gives the fluctuation–dissipation theorem in the
conservative limit of zero entropy production. Here, we shall paraphrase that derivation, as
applied to the Langevin case.

Before doing so, let us first note that the detailed balance symmetry (2.15) is responsible
in the purely conservativeS = 0 case for the existence of fluctuation–dissipation and
reciprocity relations. As we have seen, it is also responsible in the drivenS 6= 0 case for
the FT relation. The result in [3] is that the FT formula is,on its own, enough to give
us back the fluctuation–dissipation and the reciprocity relations in the purely conservative
limit.

Let us rewrite a form of the fluctuation–dissipation theorem for a conservative systems.
In equation (2.24) we setO = J , and compute the response to a force−hf constant in
time. Integrating (2.24) overt, t ′:∫ t

0
dt ′
∂〈J (t ′)〉
∂h

|h=0 = β
∫ t

0
dt ′ dt ′′〈−|Je−(t

′−t ′′)Hc

J |GB〉θ(t − t ′). (3.16)

The right-hand side of (3.16) can be re-expressed as follows

β

2

∫ t

0
dt ′ dt ′′〈−|e−(t−t ′)Hc

Je−(t
′−t ′′)Hc

Je−t
′′Hc |GB〉 = 1

2β

∂2

∂λ2
〈−|e−t (Hc+λβJ )|GB〉|λ=0

(3.17)

where we used the fact thatHc annihilates both〈−| and|GB〉. Similarly, the left-hand side
of (3.16) can be re-expressed as

∂

∂h

∫ t

0
dt ′〈−|Je−t

′H(h)|GB〉|h=0 = ∂

∂h

∫ t

0
dt ′〈−|e−(t−t ′)H(h)Je−t

′H(h)|GB〉|h=0

= 1

β

∂2

∂h∂λ
〈−|e−t (H(h)+λβJ )|GB〉| h=0

λ=0
(3.18)

whereH(h) is the perturbed Hamiltonian. Then, we can rewrite the fluctuation–dissipation
theorem as: [

1

2

∂2

∂λ2
− ∂2

∂h∂λ

]
〈−|e−t (H(h)+λβJ )|GB〉| h=0

λ=0
= 0. (3.19)
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Using the fact that〈J 〉 = 0 in equilibrium for a conservative system, the first derivatives
with respect toλ and with respect toh vanish and equation (3.19) can be rewritten as:[

1

2

∂2

∂λ2
− ∂2

∂h∂λ

]
ln{〈−|e−t (H(h)+λβJ )|GB〉}| h=0

λ=0
= 0. (3.20)

To lowest (quadratic) order inh andλ, the general solution of (3.20) is:

ln{〈−|e−t (H(h)+λβJ )|GB〉} = A(t)(λ2+ (λ+ h)2)+ B(t)λ(h+ λ) (3.21)

whereA,B are model dependent. Equation (3.21) is a form of the fluctuation–dissipation
theorem.

Let us now show that the FT directly implies (3.21) in the purely conservative (h = 0)
limit. We have that:

ln{〈−|e−t (H(h)+λβJ )|GB〉} = ln{〈−|e−t (H(h)− λ
h
S)|GB〉} =

∫ +i∞

−i∞
dp π(p)e

−t〈σ 〉pλ
h . (3.22)

Now, with the only assumption of theFT applied to the term on the right we easily obtain:

ln{〈−|e−t (H(h)+ λ
h
S)|GB〉} = ln{〈−|e−t (H(h)−(1+ λ

h
)S |GB〉} (3.23)

order inλ, h implies (3.21).

3.4. A nonlinear fluctuation–dissipation theorem in the ‘conservative limit’

So far we have only concentrated on the case in which the forcesfi do not derive from
a potential and thus generate entropy at stationarity. However, the calculations can be
performed in the case in whichfi derive from a potential:

fi = −h∂A(x)
∂xi

. (3.24)

In that case,S is no longer an entropy production, it represents the rate of variation ofA.
For example:

S = βh∂A(x)
∂xi

vi = βhdA

dt
. (3.25)

If we start att = 0 with the equilibrium distributionin the absence of forcesfi and only
then switch on the forces, we easily obtain a version of the FT:

πh(A(t)− A(0) = a)
πh(A(t)− A(0) = −a) = eβha (3.26)

valid for arbitrary h. Here the subindexh means that the distribution depends on the field
conjugate toA that has been on fromt = 0 to t .

Using (3.26) in the limit of smallh, we recover the usual fluctuation–dissipation theorem
as follows

〈A(t)− A(0)〉|h =
∫
ada πh(A(t)− A(0) = a) = −

∫
a da πh(A(t)− A(0) = −a)

= −
∫

da e−βhaaπh(A(t)− A(0) = a). (3.27)

This yields, to lower order inh:

〈A(t)− A(0)〉|h = −
∫
ada πh(A(t)− A(0) = a)(1− βha)

= −
∫
a da πh(A(t)− A(0) = a)− hβ

∫
a2 da πh=0(A(t)− A(0) = a)

(3.28)
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which implies:

d

dh
〈A(t)− A(0)〉|h=0 = β

2
〈(A(t)− A(0))2〉|h=0 (3.29)

which is a usual form of the fluctuation–dissipation theorem.

4. Fokker–Planck equation

If the inertial term in the Langevin equation vanishes the probability distribution at timet

for the process (2.1) can be expressed only in terms of the positions (in fact, the velocities
are in this case undefined). The evolution is now given by

P(x, t) = e−tHFPP(x, 0) (4.1)

whereHFP is the Fokker–Planck operator:

HFP= −∂xi (T ∂xi + ∂xiU(x)+ fi). (4.2)

We have setγ = 1 for this case. In bracket notation, we have:

P(x, t) = 〈x|φ(t)〉
|φ(t)〉 = e−tHFP|φ(0)〉 (4.3)

HFP= p̂xi (T p̂xi − i∂xiU − ifi) (4.4)

which can again be separated in conservative and ‘forced’ parts:

HFP= Hc
FP− ip̂xi fi . (4.5)

The total energy of the conservative part for this case is simplyU .
The evolution of the system satisfies the usual detailed balancein the absence of non-

conservative forces:

〈x ′|e−tH c
FP|x〉e−βU(x) = 〈x|e−tH c

FP|x ′〉e−βU(x′) (4.6)

leading to:

Q−1
FPH

c
FPQFP= Hc†

FP (4.7)

where the operatorQFP is defined by:

QFP|x〉 ≡ e−βU(x)|x〉. (4.8)

4.1. Power and entropy production for Fokker–Planck processes

In a Langevin process without inertia it is nota priori obvious how to define the power
done by the bath. In order to do this, we shall first make a heuristic argument and only
then formalise it. Let us compute the power as

T σt =
∫ t

0
dt ′ ẋifi . (4.9)

Because the velocity is not well defined, we shall have to be careful about the meaning
of this expression. Let us for the moment continue naively, writing a functional expression
for the distribution5(σt):

5(σt)t =
[ ∫

D(x)J(x)δ(ẋi + ∂xiU(x)+ fi − 0i)δ(tσt − β
∫ t

0
dt ẋifi)

]
0

= t
[ ∫ +i∞

−i∞
dλ
∫

D(x)D(p)J(x)e−
∫ t

0 [ipi(ẋi+∂xi U(x)+fi−0i)+λβẋifi ]
]
0

eλtσt
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whereJ is the Jacobian associated with the equation of motion delta. The square brackets
denote averaging over the noise. Performing this average, we obtain:

5(σt) = t
∫ +i∞

−i∞
dλ
∫

D(x)D(p)J(x)e−
∫ t

0 dt ′ ipi(ẋi+∂xi U(x)+fi−iTpi)

×e−λ
∫ t

0 dt ′ (2ifipi−β(fi+∂xi U(x))−λ2β
∫ t

0 dt ′f 2
i )eλtσt .

Equation (4.10) is a functional expression of the equality:

5(σt) = t
∫ +i∞

−i∞
dλ〈−|e−t [HFP−λ(ifi (p̂xi−iβ∂xi U(x)−iβfi )+ip̂xi fi )−βλ2f 2

i ] | init〉etλσt . (4.10)

This expression, to be compared with (2.26), can be taken as the definition of ‘power done
by the bath’, yielding the entropy production at stationarity. Note that in this definition we
have made a precise choice of factor orderings (we have associated the c-number 2pifi
with the operatorp̂xi fi + fip̂xi ).

We are now in a position to explore the consequences of a modified detailed balance.
Proposing a tranformation such as (4.7) we find that:

eβU [HFP− λ(ifi(pi − iβ∂xiU(x)− iβfi)+ ipifi)− βλ2f 2
i ]e−βU

= [HFP− λ̃(ifi(pi − iβ∂xiU(x)− iβfi)+ ipifi)− βλ̃2f 2
i ]† (4.11)

whereλ̃ ≡ −(1+λ). Performing the change of variablesλ→ λ̃ in the integral and following
the same steps as in the Kramers case we obtain the fluctuation theorem for5(σt) defined
as in (4.10).

4.2. Nonlinear fluctuation–dissipation theorem

A direct derivation of the nonlinear fluctuation–dissipation theorem (3.26) can be made for
dynamics which (like Fokker–Planck’s, heat bath, etc) satisfies detailed balance. Denoting
H(h), the evolution Hamiltonian associated with a potentialU − hA(x), we then have:

eβ(U−hA)H(h)e−β(U−hA) = H †(h). (4.12)

We write

πh(A(t)− A(0) = a) =
∫

dλ〈−|eλAe−tH(h)e−λA|GB〉e−λa (4.13)

where|GB〉 is the canonical distributionat h = 0. Now,

〈−|eλAe−tH(h)e−λA|GB〉 = 〈−|eλAe−β(U−hA)e−tH
†(h)eβ(U−hA)e−λA|GB〉

= 〈−|e(βh+λ)Ae−tH(h)e−(βh+λ)A|GB〉. (4.14)

Introducing this in (4.13) and performing the integral overλ one readily obtains (3.26).

5. Conclusions

In this paper we have derived the FT for Langevin processes of systems with finitely
many degrees of freedom. We do not require any properties of the potential apart from
boundedness, since the Langevin equation is ‘as ergodic as possible’.

However, we have noted in several places that the derivations do not carry through
automatically if the zero eigenvalue of the operatorH is degenerate. This happens surely
in the case that the system is disconnected from the bath (γ = 0) and in theT = 0 case.
More interestingly, it may also happen in an infiniteN = ∞ system.
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Indeed, because the ‘gap’ in the spectrum is the inverse of a timescale, a gapless
spectrum is an indication of ‘slow’ dynamics. This suggests that the FT might be violated
for those (infinite) driven systems which in the absence of drive have a slow relaxational
dynamics that does not lead them to equilibrium in finite times (as is the case of glassy
systems, coarsening, etc).

In such systems it is known [4] that the fluctuation–dissipation theorem can be violated
even in the limit of vanishing power input, although the frequency range of the violation
respects some bounds [10]. The violation of the fluctuation–dissipation theorem (or
alternatively, the appearance of ‘effective temperatures’ different from the bath temperature)
seems to be a signature of the dynamics of conservative or near-conservative complex
systems [9, 11]. This raises the intriguing possibility that the violation of FT might exist
and play a similar role for strongly driven infinite systems.
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